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1 Introduction 

The Coastal Integrated Forestry Operations Approval (Coastal IFOA) sets out the rules for 
native timber harvesting in New South Wales (NSW) coastal state forests and establishes 
the environmental outcomes that must be achieved under the approval. The Coastal IFOA 
requires that the approval conditions are monitored to ensure they are effective in 
achieving the required objectives and outcome statements.1  
 
The Environment Protection Authority (EPA) and Department of Primary Industries (DPI) 
have jointly approved the Coastal IFOA Monitoring Program proposed by the NSW Forest 
Monitoring Steering Committee. The program sets out the broad framework to evaluate the 
effectiveness of priority conditions in meeting the Coastal IFOA objectives and outcomes. It 
centres on strategies to monitor and research forest health, biodiversity, water quality and 
aquatic habitat, and wood supply. 
 
The program established key questions to focus monitoring on the Coastal IFOA objectives 
and outcomes. Landscape-scale monitoring questions include: 

▪ Do harvesting conditions establish an appropriate mosaic of forest age classes at the 
landscape scale? 

▪ Are the conditions maintaining functional connectivity for focal fauna species to move 
within and across the forest? 

▪ Are the conditions effective in ensuring regenerating forests meet benchmarks for: (i) 
floristic composition (ii) forest structure (iii) coarse woody debris? 

▪ Do the conditions establish enough key habitat features to maintain fauna species 
within and across the forest? 

▪ To what extent are the conditions effectively managing the risk of new or existing 
areas subject to dieback? 

▪ To what extent do the Coastal IFOA conditions maintain species occupancy in the 
landscape? 

▪ Are the conditions affecting current commitments to meet wood supply? 

▪ Are the conditions effectively promoting regeneration for long-term sustainable 
wood supply? 

Understanding changes in forest structure at the local and landscape scale is critical to 
effectively answering these questions. This is supported by analysis of remote sensing data 
and integration with other spatial and non-spatial data. 

1.1 Remote sensing supports landscape-scale monitoring 

Multiple remote sensing methods are used in NSW to monitor public and private native 
forests, including passive and active sensors to assess the structure and condition of forest 
vegetation. 
 
Passive sensors measure reflected energy from the sun or energy emitted from an object 
(i.e. heat). Passive sensors include cameras operating in the visible spectrum and multi-
spectral instruments which typically collect information in the visible, near infrared and 
(sometimes) thermal infrared portions of the electromagnetic spectrum. 
 

 
1 Coastal IFOA Conditions (Chapter 8) and Coastal IFOA Protocols (Protocol 38). 

https://www.epa.nsw.gov.au/your-environment/native-forestry/integrated-forestry-operations-approvals/coastal-ifoa
https://www.nrc.nsw.gov.au/ifoa-mer
https://www.epa.nsw.gov.au/-/media/epa/corporate-site/resources/forestagreements/18p1177-coastal-ifoa-conditions.pdf?la=en&hash=E437EFD84FE1B1002AFF69DB1A13336319FF5A56
https://www.epa.nsw.gov.au/-/media/epa/corporate-site/resources/forestagreements/coastal-ifoa-protocols.pdf?la=en&hash=62F5AFBB969D14D13A1FDFDE003B7BE8081A50D1
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Active sensors transmit energy directly and measure the returning signal. Active sensors 
include radar, sonar and LiDAR (Light Detection and Ranging). 
 
Sensors can be mounted on ground-based platforms, airborne platforms (i.e. aircraft, 
unmanned aerial vehicles (UAVs)) or satellites – which affects the area able to be captured 
and the resolution of data captured. 
 
Once collected, remotely sensed data must be processed into products and information to 
provide knowledge and insights to support decision-making. 
 
A detailed discussion of the types and suitability of remote sensing methods for monitoring 
NSW native forests was prepared by Hislop and Stone (2023) to support the development 
of the NSW Private Native Forestry MER Framework2. 

1.2 Airborne LiDAR enables landscape-scale forest structure 
analysis 

Airborne LiDAR (Airborne Laser Scanning; ALS) allows the 3D structure of forests to be 
evaluated across large areas with reduced effort and costs compared to ground-based 
measurements, and for some parameters at greater accuracy than by field crews using 
manual methods. 
 
Forest structural metrics derived from ALS can be categorized into four main categories: 

▪ cover 

▪ height 

▪ horizontal variability 

▪ vertical variability 

These 3D metrics can be combined with other spatial and non-spatial datasets to describe 
how forest structural characteristics relate to forest values and disturbance history. 

1.3 New airborne LiDAR available for NSW coastal state forests 

New ALS data and co-incident high-resolution imagery were captured across 250,000 ha of 
state forests in eastern NSW between August 2022 and April 2023 (Figure 1).  
 
Sites were selected to cover the range of forest types, areas burnt and unburnt during the 
2019-20 wildfires, fauna monitoring sites, forest inventory plots, completed and proposed 
harvesting areas, and areas managed for conservation. 

 

 

 

 
2 Hislop, S. & Stone, C. (2023) Remote sensing of NSW private native forests – options and feasibility, Report 
prepared for the NSW Natural Resources Commission, Sydney 
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Figure 1 – Airborne LiDAR capture areas over state forests in 2022 and 2023 
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2 Methods used to process and analyse ALS data 

The Natural Resources Commission chaired a small working group comprised of experts in 
forest-based spatial and remote sensing analysis to advise on suitable ALS-derived metrics 
and methods to answer the key monitoring questions. The working group was comprised of: 

▪ Professor Patrick Baker, The University of Melbourne 

▪ Dr Geoff Horn, NSW Department of Planning and Environment 

▪ Dr Sam Hislop, FLINTpro, Mullion Group  

▪ Dr Julian Wall, 2rog 

▪ Tony Brown, Forestry Corporation of NSW 

This section outlines the methods used to process the ALS data into spatial layers and the 
subsequent analysis undertaken by the working group and a team from the University of 
Newcastle. 

2.1 Airborne laser scanning (ALS) data acquired in 2022 and 2023 

The ALS data were acquired by Aerometrex Pty Ltd, using a RIEGL VQ-780II sensor, at 
different times throughout 2022 and 2023 (Table 1).  
 
The ALS data has a point density of approximately 30 points per m2 and was delivered by 
the supplier in a point-cloud (LAS) format, split into tiles of 500m x 500m. 
 

Table 1 – LiDAR capture areas and dates 

Area Acquisition dates 

Casino 23/06/2022 to 25/06/2022 

Coffs Harbour 07/07/2022 

Styx River 08/07/2022 

Bulahdelah 23/08/2023 

Batemans Bay 21/04/2023 to 04/05/2023 

Eden 01/08/2022 

Wauchope 06/08/2022 to 23/11/2022 
03/03/2023 (re-fly of small portion) 

 
The state forests covered by each capture area are listed in Appendix 1. 
 

2.2 LiDAR data processing methods 

This data was processed using the LidR package in R package LidR (Roussel et al. 2020) on 
an Amazon Web Services (AWS) machine supplied by Forestry Corporation of NSW 
(FCNSW). LidR enables efficient parallel processing of large LiDAR datasets.  
 
The processing steps, including code, are outlined in detail in the Appendix 2: ALS 
processing steps in R. They are briefly described here. 
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2.2.1 Height normalisation 

LiDAR discrete return sensors emit laser pulses and measure the time taken for the 
reflected energy to return to the sensor. From the elapsed time, the distance between the 
sensor and object can be calculated. Because tree canopies contain many gaps, each pulse 
may have multiple returns. The ‘first’ returns are more likely to be the points that represent 
the forest canopy, while ‘last’ returns often indicate the ground. 
 
Height normalisation replaces the Z (height) value for every point from an absolute 
measure (i.e., above sea level) to a relative measure from the ground. The normalised point 
cloud can then be used to determine the height of vegetation (Figure 2).  
 
Prior to calculating relative heights, however, the ground surface must be modelled. Here, 
a triangulated irregular network (TIN) method was used to create the ground surface 
model. In a TIN, each ‘ground’ point is triangulated from its closest two points to create a 
surface. Because we only want to triangulate between ground points, the point cloud needs 
to be classified prior to this function being run. The data from the supplier is usually 
already classified into basic classes (ground, vegetation). 
 

 
Figure 2 - Example of an initial point cloud (left) and a height normalized point cloud (right) 

 

2.2.2 Canopy height models 

A canopy height model (CHM) is a 2-dimensional representation of canopy height across an 
area (e.g., the LiDAR coverage extent) (Figure 3).  
 
There are many different methods in the literature for generating CHMs. The simplest, 
conceptually, is to place a grid with a cell size of, for example, 1m across the area and take 
the highest point in each cell. However, this can lead to canopy ‘pits’ and a poor-quality 
output which looks speckled.  
 
Here, the ‘pit-free’ algorithm of Khosravipour et al. (2014) was used to generate a smoother, 
more realistic output. After running the algorithm, a few individual pixels were unmapped 
(no-data). These were filled based on the mean of the surrounding 8 pixels using the R 
package terra (Hijmans 2023). 
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Figure 3 - Example of a 3D point-cloud (left) and canopy height model (right) 

 

2.2.3 LiDAR metrics 

LiDAR metrics are summary statistics of all the points in a specified area, typically based 
on the distribution of height values (vertical profile) (Figure 4). 
 
Here, the Z-values (height) are summarised across the landscape using a 30m grid. 
Therefore, in each 30 x 30 m cell, all the points in that cell are summarised into a single 
value (e.g., the 95th percentile, the mean, etc.) with the output being a raster surface. 
 

 
Figure 4 - Example of a 3D point cloud (left) and the corresponding distribution of height values 

(right), with the 50th and 95th percentiles shown in red 
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In this analysis, the first returns only were used to generate the LiDAR metrics shown in 
Table 2. 
 

Table 2. LiDAR metrics created for this analysis 

Metric Details 

Canopy cover (%) Calculated as the number of first returns 
over 2m divided by all first returns 

Canopy top height (m) The 95th percentile height of first returns 

Average canopy height (m) Average height of first returns 

Standard deviation (m) Standard deviation of first returns 

Skewness (m) Skewness of first returns (i.e., whether 
more points are in the upper strata 
(negative skew) or lower (positive skew) 

Coefficient of variation (m) The standard deviation divided by the 
average height 
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2.2.5 Forest structure index 

FCNSW has developed a ‘forest structure index’, which uses the 1m CHM to produce a 
surface representing forest structure across a broader landscape.  
 
The steps to create the structure index are:  
 

1. Square the CHM value for each 1m pixel 

 

 

2. Aggregate to 5m pixels, using the sum of squared CHM values for each 1m pixel 

 
 

  

23 24 26 25 24 24 23 22 19 23 529 576 676 625 576 576 529 484 361 529

24 31 29 28 30 28 25 24 26 25 581 955 822 760 871 763 605 585 654 616

28 26 25 31 31 28 30 27 25 27 759 693 608 981 943 761 927 753 636 737

25 26 29 25 32 28 26 31 30 23 607 675 856 617 1005 758 667 970 882 541

30 26 29 28 32 32 28 32 31 25 903 696 816 778 1035 993 759 1003 942 642

30 32 24 28 26 23 26 33 27 30 874 999 558 775 674 545 670 1060 709 891

24 32 25 29 28 24 26 28 23 30 568 1036 622 832 761 560 689 782 551 928

26 24 31 28 30 25 26 32 27 33 662 558 958 772 915 644 680 1040 751 1087

24 25 26 27 28 29 30 31 32 25 576 625 676 729 784 841 900 961 1024 615

26 28 29 26 25 25 26 27 26 26 695 796 851 697 604 621 672 747 685 678

18943 18943 18943 18943 18943 17672 17672 17672 17672 17672

18943 18943 18943 18943 18943 17672 17672 17672 17672 17672

18943 18943 18943 18943 18943 17672 17672 17672 17672 17672

18943 18943 18943 18943 18943 17672 17672 17672 17672 17672

18943 18943 18943 18943 18943 17672 17672 17672 17672 17672

18597 18597 18597 18597 18597 19332 19332 19332 19332 19332

18597 18597 18597 18597 18597 19332 19332 19332 19332 19332

18597 18597 18597 18597 18597 19332 19332 19332 19332 19332

18597 18597 18597 18597 18597 19332 19332 19332 19332 19332

18597 18597 18597 18597 18597 19332 19332 19332 19332 19332

18943 17672

18597 19332
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4. Create a focal sum using a 9x9 pixel window (i.e. 81, 5m pixels). Where the output 
value for an individual 5m pixel is the sum of the input values for itself and the 
surrounding 80 cells. The image below shows the pixels used to calculate the focal 
sum (top) and the diagonally adjacent output values (bottom). 

 
 

 
 
The result is a raster with 5m pixels where each cell represents the sum of the squared 
height across 0.2 ha. The resulting forest structure index is illustrated in Figure 5. 
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Figure 5 – Example forest structure index 

 

2.3 Method to develop structural connectivity index 

2.3.1 Context 

The configuration and contiguity of native vegetation communities in a landscape, or 
conversely the degree to which natural systems have been fragmented through 
modification (e.g. intensive harvesting), are important factor when considering forest 
resilience and the persistence of native species. 
 
Vegetation connectivity can be referred to as ‘structural connectivity’ which is simply an 
index of the connectedness of the native vegetation across landscapes3, or ‘functional 
connectivity’ which relates to the ease with which processes such as species dispersal can 
operate. 
 
Examples of structural connectivity include large connected patches, linear elements such 
as corridors, and partially vegetated drainage lines or fence lines. It may consist of more 
subtle habitat elements such as scattered trees, often referred to as “stepping stones” 
because of their scattered, non-linear structure4. 
 
Functional connectivity is distinguished from structural connectivity in the context that 
conservation value accrues to patches or stepping stones only if animals in real landscapes 

 
3 Bélisle, M. (2005). Measuring landscape connectivity: the challenge of behavioural landscape ecology. 
Ecology. 86: 1988-1995. 
4 Doerr, V.A.J., Doerr, E.D. and Davies, M.J. (2010). Does structural connectivity facilitate dispersal of native species 
in Australia’s fragmented terrestrial landscapes? Systematic Review No. 44, Collaboration of Environmental 
Evidence. CSIRO. Canberra. 
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use them to bring about connectivity5. Patches of native vegetation are connected 
functionally if a species can cross the non-habitat area (matrix) between those habitat 
patches successfully6. 
 
Structural connectivity considers the structure of the forest-gap matrix, while functional 
connectivity considers the capacity of individual species to move within this matrix.  
 
Functional connectivity is more complex because what is functionally connected for one 
species might not be for another species. 
 
In this trial we consider structural connectivity only, and we make a broad assumption that 
for most species, ‘connected’ forested will be preferred over ‘fragmented’ forest, which will 
be preferred over ‘forest edge’, which will be preferred over forest gaps, for occupancy and 
movement. 
 

2.3.2 Approach to develop connectivity index using 6m threshold 

The CHM was reclassified into a binary patch layer with a 5x5m pixel resolution, based on a 
6 m height threshold which is a recognised cutoff between ‘low’ trees and ‘mid-tall’ trees 
(Australian soil and land survey handbook7). The two classes were: 

▪ ≥ 6m = 1 

▪ < 6m = 0 

The CHM was smoothed whereby any ‘1’ pixel that was entirely surrounded by ‘0’ pixels 
was converted to ‘0’, and any ‘0’ pixel that was entirely surrounded by ‘1’ pixels was 
converted to ‘1’. 
 
A 30 m buffer was then established around each separate forest patch (connected groups 
of cells with value = 1), and concentric 30m buffers were created around these, demarking 
different distance bands to the nearest adjacent forest. The layer was then converted to a 
structural connectivity layer with 10 classes (Table 2).  
 

  

 
5 Beier, P. and Noss, R.F. (1998). Do habitat corridors provide connectivity? Conservation Biology. 12: 1241-1252. 
6 Tischendorf, L. and Fahrig, L. (2000). On the usage and measurement of landscape connectivity. Oikos. 90: 7-
19. 
7 McDonald, R.C., Isbell, R. F., Speight, J.G., Walker, J. and Hopkins, M.S. (1984). Australian soil and land survey. 
Field handbook. Inkata, Melbourne. pp 165 
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Table 2 - Structural connectivity classes attributed to CHM-derived patch layer  
(height threshold = 6m) 

ClassA Connectivity class Description 

1 Connected Any forest patch ≥ 6m height that contains ≥ 30% 
forest cover within a 30 m bufferB around the patch, 
and ≥50% connected forest within a 30 m bufferB 

1 Fragmented Any forest patch ≥ 6m height that contains < 30% 
forest cover within a 30 m bufferB around the patch, 
or < 50% connected forest within a 30 m bufferB 

0 Edge (0-30m) Non-forest surrounding any patch, to a distance up 
to 30 m from the patch 

0 Gap (30-60 m) Non forest that is >30 to 60 m from a patch 

0 Gap (60-90 m) Non forest that is >60 to 90 m from a patch 

0 Gap (90-120 m) Non forest that is >90 to 120 m from a patch 

0 Gap (120-180 m) Non forest that is >120 to 180 m from a patch 

0 Gap (180-240 m) Non forest that is >180 to 240 m from a patch 

0 Gap (240-300 m) Non forest that is >240 to 300 m from a patch 

0 Gap (>300 m) Non forest that is >300 m from the nearest patch 
A. ≥6m = 1; < 6m = 0 
B. Spatial extent of the 30 m buffer includes the patch from which it was derived 

 

2.3.3 Approach to develop connectivity index using 12m threshold 

The CHM was also reclassified into a binary layer with a 5x5m pixel resolution, based on a 
12 m height threshold, which is a recognised cutoff between ‘mid-tall’ trees and ‘tall’ trees 
(Australian soil and land survey handbook ), and likely separates non-forest and early 
regrowth forest from advanced regrowth, mixed, mature and old forest. The two classes 
were: 

▪ ≥12m = 1 

▪ < 12m = 0 

As with the 6 m threshold, the CHM was smoothed, then a 60 m buffer was established 
around each separate forest patch (patches with value = 1), and concentric 60 m buffers 
were created around these, demarking different distance bands to the nearest adjacent 
forest. The layer was then converted to a structural connectivity layer with eight classes 
(Table 3). 
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Table 3 – Structural connectivity classes attributed to CHM-derived patch layer  
(height threshold = 12m) 

ClassC Connectivity class Description 

1 Connected Any forest patch ≥12 m height that contains ≥15% 
forest cover within a 60 m bufferD around the patch, 
and ≥50% connected forest within a 60 m bufferD 

1 Fragmented Any forest patch ≥12 m height that contains <15% 
forest cover within a 60 m bufferD around the patch, 
or <50% connected forest within a 60 m bufferD 

0 Edge (0-60m) Non-forest surrounding any patch, to a distance up 
to 30 m from the patch 

0 Gap (60-120 m) Non forest that is >60 to 120 m from a patch 

0 Gap (120-180 m) Non forest that is >120 to 180 m from a patch 

0 Gap (180-240 m) Non forest that is >180 to 240 m from a patch 

0 Gap (240-300 m) Non forest that is >240 to 300 m from a patch 

0 Gap (>300 m) Non forest that is >300 m from the nearest patch 
C. ≥12m = 1; <12m = 0 
D. Spatial extent of the 60 m buffer includes the patch from which it was derived 

 
Figure 6 provides an example of outputs across the Coffs Harbour area showing the 
reclassified CHM using the 6m threshold, and the derived structural connectivity surfaces 
for the 6m threshold. Figure 7 shows the same for the 12m threshold. 
 

 
Figure 6 - Binary layer derived using the 6m height cut-off (left) and connectivity layer derived 

from the 6m cut-off data (right) 
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Figure 7 - Binary layer derived using the 12m height cut-off (left) and connectivity layer derived 

from the 12m cut-off data (right) 
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3 Interpretation of LiDAR outputs 

The LiDAR metrics described in the previous section can be combined with other spatial 
data to add context and to allow deeper analysis of impacts of different natural and 
anthropogenic drivers of change. 
 
It should be noted that the LiDAR data was captured between 2.5 and 3 years after the 
2019/20 wildfires. During this time above average rainfall occurred across the LiDAR 
capture regions providing favourable conditions for forest recovery. 

3.1 Exploring the relationship between time since harvest and 
LiDAR metrics 

Time since last harvest was intersected with the LiDAR metric rasters (Figure 8). This, in a 
sense, swaps space for time.  
 
By summarising the values of each LiDAR metric in the area harvested in a given year, it is 
possible to look at the relationship between time since harvest and vegetation structure. 
For example, how do areas ten years post-harvest compare with areas two years post-
harvest? 
 
The methods here required existing spatial datasets for harvest history in native forests 
and plantation data, which was used to mask out areas of plantation within the capture 
areas. 

 
Figure 8 - The CHM for Coffs Harbour with recent harvest history overlaid 
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Outputs from this analysis are shown in Figure 9. Here, we can infer that canopy cover 
returns to its baseline state seven years after harvest, whereas canopy height takes more 
like 15 years. 
 

 
Figure 9 - Summary statistics based on time since harvest for Coffs Harbour, including LiDAR 

metrics for canopy top height (p95), average height (avg), canopy cover (cov), standard deviation 
(sd), coefficient of variation (cv) and skewness. 

 
A similar analysis was conducted for each LiDAR capture area comparing mean top height 
(p95) and mean canopy cover within the base net area (BNA) and forests in the same area 
managed for conservation, using the method described in section 3.2. Figure 10 and Figure 
11 show the mean top height (p95) and mean canopy cover respectively in each region by 
harvest year for each area of BNA. 
 
Further exploration of the data is needed to account for different forest types commonly 
found in areas managed for conservation compared to forest within the BNA within the 
same operational area. 
 
 



Natural Resources Commission Report 
Published: October 2023 Monitoring forestry outcomes in NSW native forests using airborne LiDAR 

 
Document No: D23/4411 Page 17 of 41 
Status:  DRAFT Version:  0.1 

 
Figure 10 – Mean p95 CHM return for conservation areas (red line) and BNA by year harvested 

 

 
Figure 11 – Mean canopy cover for conservation areas (red line) and BNA by year harvested 
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3.2 Analysing LiDAR metrics and forest variability 

Integration and analysis of spatial data and LiDAR metrics was conducted using R. Figure 
12 provides an overview of the data preparation and processing steps. The R code used for 
the analysis is detailed in Appendix 2. The spatial data used in the analysis are listed in 
Appendix 3. 
 

 
 

Figure 12 – Process used to prepare and analyse LiDAR metrics and other spatial data 

 
SpatRasters are spatially referenced surfaces which store data within pixels. This is the 
process used for storing LiDAR data for extraction and analysis.  
 
SpatVectors are used to store vector data such as points, polygons and other attributes. 
Geometry within a SpatRaster is identified by Polygons, often MultiPolygons. These 
Polygons are of varying shape and identify a specific location within the SpatRaster. This 
location is identified using a coordinate reference system (CRS).  
 
Using SpatRasters of forest data and SpatVectors enables LiDAR metrics to be extracted, 
such as average CHM return or canopy cover, and examine what effects certain factors, 
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such as fires or harvesting method, may have on forest variability. This process involves 
first, extracting data from the SpatRaster, which provides the associated LiDAR metrics for 
points in the SpatVector. From this the mean, max and standard deviation are extracted. 
The extracted data is then spatially joined to the SpatVector data frame by matching 
polygons within the same location. This is similar to how a left-join may work with a 
common variable. 
 
The process of extracting data from SpatRasters allows the calculation of factors such as 
slope within forests, and examine how slope position may impact forest structure. To 
calculate slope data is extracted from a Digital Terrain Model (DTM), which is a SpatRaster 
that contains topography data of a rectangular grid. The topographic data is used to 
calculate a Topographic Position Index and classify each polygon within 6 slope position 
variables: 

▪ valley 

▪ lower slope 

▪ middle slope 

▪ flat slope 

▪ upper slope 

▪ ridge.  

 
The extracted slope metrics are then joined to the SpatVector to examine the effect of 
slope and fire severity from the 2019/20 wildfires on forest characteristics. 
 

3.2.1 Slope position and fire severity affect mean tree height and canopy cover 

Slope position is known to influence forest type and productivity due to soil conditions and 
moisture availability, which also influences fire behaviour. Figure 13 shows the trends in 
mean P95 CHM returns and canopy cover for each slope position and fire extent and 
severity mapping (FESM) category for three of the LiDAR capture areas. There is a general 
trend of lower tree top height and canopy cover as fire severity increases, combined with a 
trend of decreasing mean P95 CHM returns from the lower valley slope position to ridges. 
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Figure 13 – Effect of slope position and fire severity on P95 CHM return and canopy cover 

 
The same data is presented in Figure 14 to illustrate the effect of fire severity on mean top 
height and canopy cover.  

 
Figure 14 – P95 CHM returns and canopy cover by fire severity category 

 



Natural Resources Commission Report 
Published: October 2023 Monitoring forestry outcomes in NSW native forests using airborne LiDAR 

 
Document No: D23/4411 Page 21 of 41 
Status:  DRAFT Version:  0.1 

3.2.2 Tree height distribution illustrates mosaic of forest age classes 

The distribution of P95 CHM returns can be extracted from LiDAR metrics to illustrate the 
variation across forests from the local to the landscape scale.  
 
Figure 15 shows the P95 CHM returns distribution for one whole Local Landscape Area 
(LLA) within the Port Macquarie region (‘Bottle Brush’).  
 

 
Figure 15 – Density of P95 CHM return by P95 CHM value for Bottle Brush Local Landscape Area 

coloured by compartment number 

 
Figure 16 shows the distribution for each compartment within the same LLA. 
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Figure 16 - Density of P95 CHM return by P95 CHM value for each compartment within the Bottle 

Brush Local Landscape Area 

 
Return distribution can also be identified for common zones within forest management 
areas to differentiate between features excluded from harvesting to meet soil stability or 
biodiversity conservation goals, as illustrated in Figure 17. 
 

 
Figure 17 – Number of P95 CHM returns by P95 CHM value for trees within harvest exclusion 

zones in compartments KRW004 & KRW005 in the Bottle Brush LLA 

 
The analysis can be repeated at any scale from Patch (approx. 10ha) to Compartment 
(approx. 300 to 500ha) to Local Landscape Area (approx. 1,500ha), with mean top height 
(p95) shown at each scale to show the mosaic across the forested area. This is illustrated in 
Figure 18 to Figure 21. 
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Figure 18 – Mean top height (p95) mosaic at the LLA scale (left) and for compartments within the 

Base Net Area (right) for the Eden LiDAR capture area 

 

 
Figure 19 – Mean top height (p95) mosaic at the LLA scale (left) and for compartments within the 

Base Net Area (right) for the Styx River LiDAR capture area 
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Figure 20 – Mean top height (p95) mosaic at the LLA scale (left) and for compartments within the 

Base Net Area (right) for the Batemans Bay LiDAR capture area 

 

 
Figure 21 – Mean top height (p95) mosaic at the LLA scale (left) and for compartments within the 

Base Net Area (right) for the Casino LiDAR capture area 
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4 Conclusions 

This report has presented the methods used to process and analyse recently acquired ALS 
data in a selection of State forests in NSW. The data provides a wealth of information with 
respect to forest structure across the landscape, including in areas where recent 
harvesting has taken place and areas affected by the 2019/20 wildfires. 

4.1 Suitability of data and methods for monitoring impact of the 
Coastal IFOA on forest values 

Airborne LiDAR data and spatial analysis can provide high-resolution information about 
forest structure and its relationship to topography, natural disturbances and forest 
management activities. This is particularly useful for monitoring temporal changes in forest 
structure, health and habitat diversity. 
 
However, while airborne LiDAR provides a comprehensive characterisation of forest 
structure across the landscape, by itself it is somewhat limited in its ability to represent 
forest composition and function without the integration of additional information. 
 
The analysis presented in this report has integrated LiDAR-derived metrics with spatial 
data for forest management boundaries, fire history and harvesting history to explore 
relationships and develop outputs that could be used to answer Coastal IFOA monitoring 
questions. Further analysis and interpretation of outputs is required to address specific 
monitoring questions. 
 

4.2 Next steps 

In line with the objectives of the Coastal IFOA monitoring program and the NSW 
Government commitment to open data the following will be implemented: 

▪ Raw data and derived metrics will be made publicly available to enable other 
researchers to add to the body of knowledge and to support transparency in the 
assessment of impacts of forestry practices 

▪ The analysis will be extended to include previous LiDAR data captures over the same 
areas and analyse change over time, including identifying drivers of change where 
data is available 
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4.4 Recommendations for further work 

The ALS captured here is an extremely valuable resource which could be analysed further 
to gain other insights. In particular, integration with field data would allow models of target 
variables to be generated (e.g., aboveground biomass, tree species). 
 
Recommendations for further work include: 

▪ Integrate other spatial and non-spatial data (e.g. site quality, inventory plots, DPI 2018 
feasibility study) into analysis 

▪ Integrate LiDAR metrics into analysis of Coastal IFOA fauna monitoring results and 
species occupancy modelling, as well as input to research into habitat suitability 
under the koala research program 

▪ Integrate LiDAR metrics with other field-based and remote sensing analysis of forest 
recovery following the 2019-2020 wildfires 

▪ Further explore structural diversity within local landscape areas by integrating 
management and natural disturbance histories 

▪ Further explore the effect of fire severity on structural characteristics of different 
forest types and landscape positions 

▪ Explore how imputation methods could be used to extrapolate analysis across other 
state forest areas 
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Appendix 1 – State forests within each LiDAR capture area 

Capture Area State Forest  Capture Area State Forest 

Casino Banyabba  Port Macquarie Lansdowne 

 Braemar   Lorne 

 Bungawalbin   Comboyne 

 Camira   Upsalls Creek  

 Carwong   Kerewong 

 Devils Pulpit   North Branch 

 Doubleduke   Johns River  

 Ellangowan   Middle Brother 

 Gibberagee   Kew 

 Mororo   Kendall 

 Myrtle   Broken Bago  

 Tabbimoble   Burrawan 

 Whiporie   Cowarra 

Coffs Harbour Conglomerate   Cairncross 

 Lower Bucca   Ballengarra 

 Orara East  Batemans Bay Benandarah 

 Wedding Bells   Boyne 

Styx River Styx River   Clyde 

Bulahdelah Bulahdelah   Currowan 

 Wang Wauk   Flat Rock 

Eden East Boyd   Kioloa 

 Timbillica   North Brooman 

    South Brooman 

    Shallow Crossing 

    Yadboro 
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Appendix 2 – ALS processing steps in R 

Airborne laser scanning (ALS) is increasingly used to create enhanced forest inventories 
and monitor forest structure. 
 
Typically, the company that acquires the data supplies it as 3D point clouds which are split 
into tiles of (e.g., 1km by 1km) to aid processing. 
 
This document outlines the steps taken to create a canopy height model (CHM) and a range 
of lidar ‘metrics’ from the point cloud data. The lidR package in R was used to process the 
data, but the steps are more-or-less comparable when using other lidar processing 
software (e.g., Lastools, Fusion). 
 

Install and load the required packages: 

library(lidR) # package for processing of las files 
library(future) # allows multi-core processing 
library(sf) # spatial features package, for working with vector-based 
spatial data 
library(terra) # a raster processing package 
library(PerformanceAnalytics) 

Set the working directory (or use relative path names): 

# setwd(<directory where LAZ directory is located>) 
indir <- 'LAZ' # directory name where las files are located 

To get the boundaries of the las files (for use in a GIS) the following script can be used: 

ctg <- readLAScatalog(indir) #read in the catalogue of las files 
spx <- as.spatial(ctg) # convert catalogue boundaries to spatial layer 
spx <- st_as_sf(spx) # convert sp object to sf object 
st_crs(spx) <- 'EPSG:7856' # set projection if needed (GDA 2020 zone 56) 
dir.create('shapes') 

st_write(spx, 'shapes/lidar_boundaries.shp', append=FALSE) # write out as 
shape file 

Some tiles around the edges of the acquisition area contain too few points to adequately 
process, so we can remove (or move) files less than 50kb in size with the following code if 
required: 

dir.create(paste0('LAZ/toosmall')) 

x <- list.files(indir, pattern='las', full.names = T) 

x <- x[sapply(x, file.size) < 50000] 

file.rename(x, paste0('LAZ/toosmall/',basename(x))) 
 

 

Height Normalisation 

Height normalization replaces the Z (height) value for every point from an absolute 
measure (i.e., above sea level) to a relative measure from the ground. Therefore, in a forest 
the Z value will become the vegetation height above the ground.  
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The following code reads in a catalogue of las files, sets some processing options and then 
runs the normalize_height function from the lidR package. 
 

ctg <- readLAScatalog(indir) # read in the catalogue 
  
# Create directory for writing normalized files 
outdir <- 'Normalized' 
dir.create(outdir) 

# Set some processing options 
opt_output_files(ctg) <- paste0(outdir, "/{*}") # this writes out the files 
instead of holding them in memory 
opt_laz_compression(ctg) <- TRUE # this writes out files as compressed laz 
files instead of las files 
opt_filter(ctg) <- "-drop_class 7" # drop points classified as ‘noise’ 
opt_chunk_buffer(ctg) <- 10 # change the buffer size if desired 
  
# Using the future package, multi-core parameters are set (use 
plan(multisession, workers=n) to limit number of cores if problems with 
memory) 
plan(multisession) 
    
# The normalize function from the lidR is then called 
normalize_height(ctg, tin()) 

 
The above can take many hours, depending on the size of the dataset and computer 
specifications. lidR automatically displays a handy progress plot.  
 
Note that the ‘TIN’ method of height normalization is used here. A triangulated irregular 
network (TIN) triangulates between points to create a surface. Because we only want to 
triangulate between ground points, the point cloud needs to be classified prior to this 
function being run. The data from the supplier is usually already classified into basic 
classes (ground, vegetation, etc.) 
 
It is important to note that each tile needs to be buffered to avoid edge effects between 
tiles (i.e., triangulation will use points from neighbouring tiles). Luckily, lidR creates on-the-
fly buffers of 30 m by default. The buffer size can be modified if desired, using: e.g., 
opt_chunk_buffer(ctg) <- 10 
 
If, for some reason, the processing fails and R crashes, the following code allows 
processed files to be flagged so they are not processed again. This will need to be inserted 
above after reading in the catalogue. 
 

ctg2 <- readLAScatalog(outdir) 
spctg2 <- as.spatial(ctg2) 
  
ctg <- catalog_intersect( 
   ctg, 
   spctg2, 
   subset = "flag_unprocessed" 
 ) 
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Canopy Height Model (CHM) 

A CHM is a 2-dimensional representation of canopy height across the extent of lidar 
coverage. Many different algorithms have been proposed. The most simple, conceptually, is 
to place a grid with a cell size of, for example, 1m across the area and simply take the 
highest point in each cell. However, this can lead to canopy ‘pits’ and a poor quality output 
which looks speckled.  
 
In the following code, the ‘pit-free’ algorithm of Khosravipour et al (2014) was used. 

indir <- 'Normalized' 
  
outdir <- 'Products/CHM' 
dir.create('Products') 

dir.create(outdir) 

plan(multisession) 
  
ctg <- readLAScatalog(indir) # as above, read in the catalogue, this time 
using the normalized files 
opt_select(ctg) <- "xyz" # selecting only the xyz values of the points may 
use less memory 
opt_output_files(ctg) <- paste0(outdir, "/{*}") # this will create 
individual output files for each tile. Only needed for large datasets, 
otherwise these are stored in memory and merged at the end. 
  
# The function to create the CHM is as follows. This uses the pit-free 
algorithm, with specified height and edge parameters 
chm <- rasterize_canopy(ctg, res = 1, algorithm = pitfree(thresholds = c(0, 
10, 20, 30), max_edge = c(0, 1.5)), pkg = "terra") 

z56 <- 'EPSG:7856' # GDA 2020 projection specification 
crs(chm) <- z56 # set coordinate reference system 
  
# The pit-free algorithm may still output a raster with some no-data 
pixels. The following function from the terra package fills any NA pixels 
with the mean of the surrounding pixels 
chm <- focal(chm, w=3, fun='mean', na.rm=T, na.policy='only') 
  
writeRaster(chm, 'Products/chm_1m.tif', overwrite=T) # write the output 
raster 
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LiDAR Metrics 

LiDAR metrics are summary statistics of all of the points in a specified area. In the 
following, the Z values (height) are summarised across the landscape using a 30m grid. 
Therefore, in each 30 x 30 m cell, all the points in that cell are summarised into a single 
value (e.g., the 95th percentile, the mean, etc.) 
 

# read in the catalogue of normalized point clouds and set some parameters 
indir <- 'Normalized' 
ctg <- readLAScatalog(indir) 
opt_select(ctg) <- "xyz" 
opt_filter(ctg) <- "-first_only" # filter the point cloud to only use first 
returns 
  
# This function calculates five common lidar metrics (cover, p95, average 
height, standard deviation and skewness) 
f = function(z) 
 { 
   cov = length(z[z>2])/length(z)*100 
   q95 = quantile(z, 0.95) 
   avg = mean(z) 
   sd = sd(z) 
   skew = PerformanceAnalytics::skewness(z) 
   return(list(cov = cov, q95 = q95, avg = avg, sd = sd, skew = skew)) 
 } 
  
plan(multisession) 
  
# run the pixel_metrics function, using a 30 metre grid size 
metrics = pixel_metrics(ctg, ~f(Z), 30) 

# set the projection information 
z56 <- 'EPSG:7856' 
crs(metrics) <- z56 
  
# write out the rasters as individual files 
terra::writeRaster(metrics[[1]], 'Products/cov_firstOnly_30m.tif', 
overwrite=T) 
terra::writeRaster(metrics[[2]], 'Products/p95_firstOnly_30m.tif', 
overwrite=T) 
terra::writeRaster(metrics[[3]], 'Products/avg_firstOnly_30m.tif', 
overwrite=T) 
terra::writeRaster(metrics[[4]], 'Products/sd_firstOnly_30m.tif', 
overwrite=T) 
terra::writeRaster(metrics[[5]], 'Products/skewness_firstOnly_30m.tif', 
overwrite=T) 
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Structural Index 

The FCNSW structural index produces a surface representing structure across a broader 
landscape. The following code creates a custom ‘forest structure index’ from the 1m CHM: 

chm <- rast('Products/chm_1m.tif') # load in the raster 
chm <- chm*chm # square the CHM 
chm <- terra::aggregate(chm, fact=5, fun='sum', na.rm=T) # aggregate to 5m 
cells, using the sum 
structindex <- focal(chm, w=9, fun='sum') # create a focal sum using 9x9 
cells surrounding each pixel 
  
writeRaster(structindex, 'Products/structural_index_5m.tif', overwrite=T) 

 

Calculating descriptive values from LiDAR metrics 

The following R code was developed by the Zac Coates, Garston Liang, Augustine Nguyen, 
Johanna Voeste, Gavin Cooper and Scott Brown from the University of Newcastle to 
integrate LiDAR metrics with spatial data and generate insights about the relationship 
between forest structure, natural features and disturbance history. 
 

#Load required packages 
 

require(tidyverse) 
 

require(sf) 
 

require(terra) 
 

require(dplyr) 

 

#load required data of multipolygon boundaries (vector) 

boundaries_info <- st_layers("Data/DataExtraction.gdb") 
boundaries <- list() ## To store all the boundaries, for different layers. 
for (i in 1:length(boundaries_info$name)) { 
  boundaries[[i]] <- 
st_read("Data/DataExtraction.gdb",layer=boundaries_info$name[i]) 
} 

 

#save names of boundaries 

names(boundaries) <- boundaries_info$name 

 

#fix geometry type of boundary (this may not be required for all 
boundaries) 

somepolys <- boundaries [[1]]  
somepolys <- st_cast(somepolys, "MULTIPOLYGON") 
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#load lidar data for extraction (raster) 

somedatcasino <- terra::rast("metrics/Area1_Casino_avg_firstOnly_30m.tif") 

 

#transform so crs (coordinate reference system) of vector and raster are 
the same 

somepolys <- st_transform(somepolys, st_crs(somedatcasino)) 

 

#extract mean, standard deviation, and max from raster for each 
multipolygon  

casinomean <- terra::extract(x=somedatcasino, y=somepolys, fun=mean) 

casinosd <- terra::extract(x=somedatcasino, y=somepolys, fun=sd) 

casinomax <- terra::extract(x=somedatcasino, y=somepolys, fun=max) 

 

#bind extracted descriptive data back to vector data 

somepolys <- cbind(casinomean, somepolys) 

 

#Identify which raster capture data was extracted from 

# vector of column names to check 
 

columns_to_check <- c(2, 4, 6, 8, 10, 12, 14, 16) 

 

# new column "capture_id" with NA values in your 'somepolys' dataframe 
somepolys$capture_id_b1 <- NA 

 

# loop through each row and check the specified columns 
 

for (i in 1:nrow(somepolys)) { 
  for (col in columns_to_check) { 
    if (!is.na(somepolys[i, col])) { 
      somepolys[i, "capture_id_b1"] <- (col - 1) %/% 2 + 1 
      break 
    } 
  } 
} 

 

#clean up data converging data from all raster captures 

 

# make replacement columns list  
replacement_column_numbers <- c(4, 6, 8, 10, 12, 14,16) 
main_column_number <- 2  # should be avg column 
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#replace the columns putting data into main column 
 

for (replacement_col_num in replacement_column_numbers) { 
  na_rows <- is.na(somepolys[[main_column_number]]) 
  somepolys[[main_column_number]][na_rows] <- 
somepolys[[replacement_col_num]][na_rows] 
} 

 

# delete purposeless columns  
 

somepolys <- somepolys[, -replacement_column_numbers] 

 

# delete other purposelesscolumns 
 

columns_to_remove <- c("ID.1", "ID.2", "ID.3", "ID.4", "ID.5", "ID.6", 
"ID.7") 

 

# resave back to somepolys 
 

somepolys <- somepolys[, !colnames(somepolys) %in% columns_to_remove] 

 

#rename avg column in somepolys to mean (repeat steps for sd and max) 
 

somepolys <- somepolys %>% 
  rename(mean_avg_b1_landunits = avg) 

 

#join mean, sd and max data 
 

somepolysleftjoin <- left_join(somepolys, select(somepolysd, 
sd_avg_b1_landunits, ID), by = "ID") 
somepolysleftjoin <- left_join(somepolysleftjoin, select(somepolymax, 
max_avg_b1_landunits, ID), by = "ID") 
b1_landunits_avg <- somepolysleftjoin 
 

 

#save data frame for each lidar metric to join  
save(b1_landunits_avg,file="dataframes/b1_landunits_avg.rds") 

 

#this process should be looped for all 8 capture zones and any multipolygon 
boundaries 

 

#load each spatial data frame (vector data) 
load("dataframes/b1_landunits_avg.rds") 
load("dataframes/b1_landunits_cov.rds") 
load("dataframes/b1_landunits_p95.rds") 



Natural Resources Commission Report 
Published: October 2023 Monitoring forestry outcomes in NSW native forests using airborne LiDAR 
 

Document No: D23/4411 Page 36 of 41 
Status:  Draft Version:  0.1 

load("dataframes/b1_landunits_sd.rds") 
load("dataframes/b1_landunits_skew.rds") 
load("dataframes/b1_landunits_structural_index.rds") 

 

#join each spatial data frame  
 

b1_landunits <- left_join(b1_landunits_avg, select(b1_landunits_cov, 
mean_cov_b1_landunits, sd_cov_b1_landunits, max_cov_b1_landunits, ID), by = 
"ID") 
b1_landunits <- left_join(b1_landunits, select(b1_landunits_p95, 
mean_p95_b1_landunits, sd_p95_b1_landunits, max_p95_b1_landunits, ID), by = 
"ID") 
b1_landunits <- left_join(b1_landunits, select(b1_landunits_sd, 
mean_sd_b1_landunits, sd_sd_b1_landunits, max_sd_b1_landunits, ID), by = 
"ID") 
b1_landunits <- left_join(b1_landunits, select(b1_landunits_skew, 
mean_skew_b1_landunits, sd_skew_b1_landunits, max_skew_b1_landunits, ID), 
by = "ID") 
b1_landunits <- left_join(b1_landunits, 
select(b1_landunits_structural_index, mean_focal_sum_b1_landunits, 
sd_focal_sum_b1_landunits, max_focal_sum_b1_landunits, ID), by = "ID") 

 

#identify which boundary data is from (useful for when all data is joined) 
b1_landunits$b1 <- 1 

 

#reasign data “spatial” class 
 

b1_landunits <- b1_landunits %>% st_as_sf() 

 

#save data for all boundary join 
save(b1_landunits,file="dataframes/b1_landunits.rds") 

 

#load all boundary data 
 

load("dataframes/b1_landunits.rds") 
load("dataframes/b2_harvestplanareagross.rds") 
load("dataframes/b3_patches.rds") 
load("dataframes/b4_whc.rds") 
load("dataframes/b5_trc.rds") 
load("dataframes/b6_treecoastal.rds") 
load("dataframes/b7_fesm.rds") 
load("dataframes/b8_bna.rds") 
load("dataframes/b9_harvesthistory.rds") 

 

#join data together based on spatial shape and location (join by largest to 
resolve duplication of data) 
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bna_treecoastal <- st_join(b8_bna, b6_treecoastal, largest=TRUE) 
bna_treecoastal_fesm <- st_join(bna_treecoastal, b7_fesm, largest=TRUE) 
bna_treecoastal_fesm_harvesthistory <- st_join(bna_treecoastal_fesm, 
b9_harvesthistory, largest=TRUE) 
bna_treecoastal_fesm_harvesthistory_patches <- 
st_join(bna_treecoastal_fesm_harvesthistory, b3_patches, largest=TRUE) 
bna_treecoastal_fesm_harvesthistory_patches_landunits <- 
st_join(bna_treecoastal_fesm_harvesthistory_patches, b1_landunits, 
largest=TRUE) 
bna_treecoastal_fesm_harvesthistory_patches_landunits_trc <- 
st_join(bna_treecoastal_fesm_harvesthistory_patches_landunits, b5_trc, 
largest=TRUE) 
bna_treecoastal_fesm_harvesthistory_patches_landunits_trc_whc <- 
st_join(bna_treecoastal_fesm_harvesthistory_patches_landunits_trc, b4_whc, 
largest=TRUE) 
b8_b6_b7_b9_b3_b1_b5_b4_b2 <- 
st_join(bna_treecoastal_fesm_harvesthistory_patches_landunits_trc_whc, 
b2_harvestplanareagross, largest=TRUE) 

 

#save data frame 
 

save(b8_b6_b7_b9_b3_b1_b5_b4_b2, 
file="dataframes/b8_b6_b7_b9_b3_b1_b5_b4_b2.rds") 

 

 
 
 
 
 



 

 
Document No: D23/4411 Page 38 of 41 
Status:  Draft Version:  0.1 

Appendix 3 – Spatial data files used in analysis 

Description Filename File type 

Casino first returns average value, 
30m resolution 

Area1_Casino_avg_firstOnly_30m.tif Tagged Image 
File (.tif) 

Casino first returns 95th percentile, 
30m resolution 

Area1_Casino_p95_firstOnly_30m.tif Tagged Image 
File (.tif) 

Casino digital terrain model, 30m 
resolution 

Area1_Casino_dtm_30m.tif Tagged Image 
File (.tif) 

Casino first returns coverage value, 
30m resolution 

Area1_Casino_cov_firstOnly_30m.tif Tagged Image 
File (.tif) 

Casino first returns standard 
deviation, 30m resolution 

Area1_Casino_sd_firstOnly_30m.tif Tagged Image 
File (.tif) 

Casino first returns skewness, 30m 
resolution 

Area1_Casino_skewness_firstOnly_30
m.tif 

Tagged Image 
File (.tif) 

Casino structural index, 30m 
resolution 

Area1_Casino_structural_index_30m.ti
f 

Tagged Image 
File (.tif) 

Coffs Harbour first returns average 
value, 30m resolution 

Area2_Coffs_Harbour_avg_firstOnly_
30m.tif 

Tagged Image 
File (.tif) 

Coffs Harbour first returns 95th 
percentile, 30m resolution 

Area2_Coffs_Harbour_p95_firstOnly_
30m.tif 

Tagged Image 
File (.tif) 

Coffs Harbour digital terrain model, 
30m resolution 

Area2_Coffs_Harbour_dtm_30m.tif Tagged Image 
File (.tif) 

Coffs Harbour first returns coverage 
value, 30m resolution 

Area2_Coffs_Harbour_cov_firstOnly_
30m.tif 

Tagged Image 
File (.tif) 

Coffs Harbour first returns standard 
deviation, 30m resolution 

Area2_Coffs_Harbour_sd_firstOnly_3
0m.tif 

Tagged Image 
File (.tif) 

Coffs Harbour first returns skewness, 
30m resolution 

Area2_Coffs_Harbour_skewness_first
Only_30m.tif 

Tagged Image 
File (.tif) 

Coffs Harbour structural index, 30m 
resolution 

Area2_Coffs_Harbour_structural_inde
x_30m.tif 

Tagged Image 
File (.tif) 

Armidale first returns average value, 
30m resolution 

Area3_Armidale_avg_firstOnly_30m.ti
f 

Tagged Image 
File (.tif) 

Armidale first returns 95th percentile, 
30m resolution 

Area3_Armidale_p95_firstOnly_30m.t
if 

Tagged Image 
File (.tif) 

Armidale digital terrain model, 30m 
resolution 

Area3_Armidale_dtm_30m.tif Tagged Image 
File (.tif) 

Armidale first returns coverage value, 
30m resolution 

Area3_Armidale_cov_firstOnly_30m.ti
f 

Tagged Image 
File (.tif) 

Armidale first returns standard 
deviation, 30m resolution 

Area3_Armidale_sd_firstOnly_30m.tif Tagged Image 
File (.tif) 

Armidale first returns skewness, 30m 
resolution 

Area3_Armidale_skewness_firstOnly_
30m.tif 

Tagged Image 
File (.tif) 

Armidale structural index, 30m 
resolution 

Area3_Armidale_structural_index_30
m.tif 

Tagged Image 
File (.tif) 
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Description Filename File type 

Bulahdelah first returns average 
value, 30m resolution 

Area4_Bulahdelah_avg_firstOnly_30
m.tif 

Tagged Image 
File (.tif) 

Bulahdelah first returns 95th 
percentile, 30m resolution 

Area4_Bulahdelah_p95_firstOnly_30
m.tif 

Tagged Image 
File (.tif) 

Bulahdelah digital terrain model, 30m 
resolution 

Area4_Bulahdelah_dtm_30m.tif Tagged Image 
File (.tif) 

Bulahdelah first returns coverage 
value, 30m resolution 

Area4_Bulahdelah_cov_firstOnly_30
m.tif 

Tagged Image 
File (.tif) 

Bulahdelah first returns standard 
deviation, 30m resolution 

Area4_Bulahdelah_sd_firstOnly_30m.
tif 

Tagged Image 
File (.tif) 

Bulahdelah first returns skewness, 
30m resolution 

Area4_Bulahdelah_skewness_firstOnl
y_30m.tif 

Tagged Image 
File (.tif) 

Bulahdelah structural index, 30m 
resolution 

Area4_Bulahdelah_structural_index_
30m.tif 

Tagged Image 
File (.tif) 

Wauchope first returns average value, 
30m resolution 

Area5_Wauchope_avg_firstOnly_30m.
tif 

Tagged Image 
File (.tif) 

Wauchope first returns 95th 
percentile, 30m resolution 

Area5_Wauchope_p95_firstOnly_30m
.tif 

Tagged Image 
File (.tif) 

Wauchope digital terrain model, 30m 
resolution 

Area5_Wauchope_dtm_30m.tif Tagged Image 
File (.tif) 

Wauchope first returns coverage 
value, 30m resolution 

Area5_Wauchope_cov_firstOnly_30m.
tif 

Tagged Image 
File (.tif) 

Wauchope first returns standard 
deviation, 30m resolution 

Area5_Wauchope_sd_firstOnly_30m.t
if 

Tagged Image 
File (.tif) 

Wauchope first returns skewness, 
30m resolution 

Area5_Wauchope_skewness_firstOnl
y_30m.tif 

Tagged Image 
File (.tif) 

Wauchope structural index, 30m 
resolution 

Area5_Wauchope_structural_index_3
0m.tif 

Tagged Image 
File (.tif) 

Merimbula first returns average value, 
30m resolution 

Area6_Merimbula_avg_firstOnly_30m
.tif 

Tagged Image 
File (.tif) 

Merimbula first returns 95th 
percentile, 30m resolution 

Area6_Merimbula_p95_firstOnly_30m
.tif 

Tagged Image 
File (.tif) 

Merimbula digital terrain model, 30m 
resolution 

Area6_Merimbula_dtm_30m.tif Tagged Image 
File (.tif) 

Merimbula first returns coverage 
value, 30m resolution 

Area6_Merimbula_cov_firstOnly_30m.
tif 

Tagged Image 
File (.tif) 

Merimbula first returns standard 
deviation, 30m resolution 

Area6_Merimbula_sd_firstOnly_30m.t
if 

Tagged Image 
File (.tif) 

Merimbula first returns skewness, 
30m resolution 

Area6_Merimbula_skewness_firstOnl
y_30m.tif 

Tagged Image 
File (.tif) 

Merimbula structural index, 30m 
resolution 

Area6_Merimbula_structural_index_3
0m.tif 

Tagged Image 
File (.tif) 

Port Macquarie first returns average 
value, 30m resolution 

Area7_Port_Maquarie_avg_firstOnly_
30m.tif 

Tagged Image 
File (.tif) 

Port Macquarie first returns 95th 
percentile, 30m resolution 

Area7_Port_Maquarie_p95_firstOnly_
30m.tif 

Tagged Image 
File (.tif) 
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Description Filename File type 

Port Macquarie digital terrain model, 
30m resolution 

Area7_Port_Maquarie_dtm_30m.tif Tagged Image 
File (.tif) 

Port Macquarie first returns coverage 
value, 30m resolution 

Area7_Port_Maquarie_cov_firstOnly_
30m.tif 

Tagged Image 
File (.tif) 

Port Macquarie first returns standard 
deviation, 30m resolution 

Area7_Port_Maquarie_sd_firstOnly_3
0m.tif 

Tagged Image 
File (.tif) 

Port Macquarie first returns skewness, 
30m resolution 

Area7_Port_Maquarie_skewness_first
Only_30m.tif 

Tagged Image 
File (.tif) 

Port Macquarie structural index, 30m 
resolution 

Area7_Port_Maquarie_structural_inde
x_30m.tif 

Tagged Image 
File (.tif) 

Moruya first returns average value, 
30m resolution 

Area8_Moruya_avg_firstOnly_30m.tif Tagged Image 
File (.tif) 

Moruya first returns 95th percentile, 
30m resolution 

Area8_Moruya_p95_firstOnly_30m.tif Tagged Image 
File (.tif) 

Moruya digital terrain model, 30m 
resolution 

Area8_Moruya_dtm_30m.tif Tagged Image 
File (.tif) 

Moruya first returns coverage value, 
30m resolution 

Area8_Moruya_cov_firstOnly_30m.tif Tagged Image 
File (.tif) 

Moruya first returns standard 
deviation, 30m resolution 

Area8_Moruya_sd_firstOnly_30m.tif Tagged Image 
File (.tif) 

Moruya first returns skewness, 30m 
resolution 

Area8_Moruya_skewness_firstOnly_3
0m.tif 

Tagged Image 
File (.tif) 

Data storage model from ArcGis, 
stores shape data for various forest 
layers 

DataExtraction.gbd Geodatabase 
(.gbd) 

Data storage model from ArcGis, 
stores shape data for forest harvest 
history 

HarvestHistoryPancakes.gbd Geodatabase 
(.gbd) 

 
 
 
 


